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Abstract

Security testing is normally limited to the scanning of individual hosts with the goal of locating
vulnerabilities that can be exploited to gain some improper level of access on the target network.
Scanning is a successful approach for discovering security problems, but it suffers from two major
problems.  First, it ignores security issues that can arise due to interactions of systems on a network.
Second, it does not provide any concept of test coverage other than the obvious criteria of attempting all
known exploitation techniques on every system on the network.

In this paper, I present a new method for generating security test cases for a network.  This method
extends my previous work in model checking network security by defining mutant operators to apply to
my previously defined network security model.  The resulting mutant models are fed into a model checker
to produce counterexamples.  These counterexamples represent attack scenarios (test cases) that can be
run against the network.  I also define a new coverage criterion for network security that requires a much
smaller set of exploits to be run against the network to verify the network’s security.

1. Introduction
Network security installations are frequently implemented using the fortress model.  Attackers from the
outside need to surmount formidable external obstacles before they can reach the internal protected
systems.  Most of the security effort is focused on attempting to create this barrier between the outside
and the internal resources.  Very little effort is focused on internal security.  This model has the advantage
of allowing the security team to focus on a much smaller set of hosts and configurations when
implementing the security policy but it is fundamentally flawed.

Unless the barrier that is set up does not allow any connectivity there is some possibility that an attacker
may circumvent the border defenses. This is due to the following issue.  For a network to be useful it
must offer services.  These services are implemented in software and it is difficult to guarantee that any
complex piece of software does not contain some flaws [Beizer].  These flaws frequently translate into
security vulnerabilities.  If exploitable flaws exist in a service, even if the flaws have not been discovered,
they still represent a potential for network intrusion.  New security bugs are frequently discovered in
server software.

Given that it is impossible to state with final authority that there are no possible ways to bypass the border
security, it follows that some effort must be expended upon internal systems if the network is truly to be
considered secure.  This leaves open the problem of how to best protect these internal systems, without
overwhelming the security team.

Some sites rely on automated tools to perform vulnerability scanning of each host on the network.
Programs such as Computer Oracle and Password System (COPS) [COPS], System Scanner by ISS [ISS],
and CyberCop by Network Associates [NAI] are examples of tools that can scan hosts to attempt to
discover vulnerabilities in the host’s configuration.  These tools typically perform a decent job of
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discovering host vulnerabilities, but they do require significant time and effort to execute and evaluate
their results. In addition they do not attempt to identify how combinations of configurations on the same
host or between hosts on the same network can contribute to the network’s vulnerability.

In my previous work [Ritchey] I demonstrated the value of extending beyond a host-only vulnerability
assessment.   I created a modeling-based approach to network security that can be used to analyze the
overall security of a network based on the interactions of vulnerabilities within a single host and within a
network of hosts.  This approach relies on model checking technology to analyze the resulting model to
determine whether the network’s security requirements are met or if there is a method that could be used
to invalidate any of the requirements.  Security requirements are encoded as assertions in the model
checker.  If the model checker can invalidate an assertion, it demonstrates this by showing the set of steps
it followed to prove the assertion false.  This sequence represents a potential path an attacker could use to
gain access to the network.

In this paper I apply mutation operators to my network security model to produce new test cases.  Mutant
models that do not meet the defined security requirements (i.e. the change caused a security requirement
to be invalidated) represent single configuration changes to the network that would result in a
compromise of the network’s security.  By identifying which individual configuration changes result in
network compromise, we significantly reduce the total number of system features that must be verified to
assure the network’s security.

2. An Overview of Model Checking
A model checking specification consists of two parts.  One part is the model: a state machine defined in
terms of variables, initial values for the variables, and a description of the conditions under which
variables may change value.  The other part is temporal logic constraints over states and execution paths.
Conceptually, a model checker visits all reachable states and verifies that the temporal logic properties are
satisfied over each possible path, that is, the model checker determines if the state machine is a model for
the temporal logic formula.  Model checkers exploit clever ways of avoiding brute force exploration of
the state space [Birch]. If a property is not satisfied, the model checker attempts to generate a
counterexample in the form of a trace or sequence of states.

The model checking approach to formal methods has received considerable attention in the literature.
Tools such as SMV, SPIN, and Murø are capable of handling the state spaces associated with realistic
problems [Clark]. I use the [SMV] model checker, which is freely available from Carnegie Mellon
University and elsewhere.  Although model checking began as a method for verifying hardware designs,
there is growing evidence that model checking can be applied with considerable automation to
specifications for relatively large software systems, such as TCAS II [Chan].  Model checking has been
successfully applied to a wide variety of practical problems.  These include hardware design, protocol
analysis, operating systems, reactive system analysis, fault tolerance, and security [Holzmann].

The increasing usefulness of model checkers for software systems makes model checkers attractive tools
for use in aspects of software development other than pure analysis, which is their primary role today.
Model checkers are desirable tools to incorporate because they are explicitly designed to handle large
state spaces and they generate counterexamples efficiently.  Thus they provide a mechanism to avoid
custom building these same capabilities into special purpose tools.  For these reasons, I encode the
security of a computer network in a finite state description and then write assertions in the temporal logic
to the effect that "An attacker can never acquire certain rights on a given host." I then use the model
checker to verify that the claim holds in the model or to generate an attack scenario against the network
that shows how the attacker penetrates the system.
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3. Discussion of Network Exploitation Methods
This section presents the network intrusion methodology that was used to develop the techniques
presented in this paper.

3.1 Vulnerability
Breaking into a computer network requires that vulnerabilities exist in the network and that exploits for
the vulnerabilities are known.  Any network that an attacker has connectivity with will have some level of
vulnerability. The goal of network security is to try to limit this vulnerability to the minimum required to
accomplish the purpose of the network.

Network vulnerability is impossible to entirely eliminate. This is due to several factors.  For a network to
be useful it must offer services.  These services are implemented in software and it is difficult to
guarantee that any complex piece of software does not contain some flaws [Beizer].  These flaws
frequently translate into security vulnerabilities.  Sometimes, even when a security flaw is known, the
operational need to offer a service with the vulnerability supercedes the need for the network to be totally
secure.  Network vulnerability may also be created by poor configuration.  Given the large number of
hosts on some networks, it is not surprising that some of them may not be set up to maximize their
defenses.  Many hosts are administered by the primary user of the system, who may lack the proper
training to configure a secure computer system.

3.2 Exploitation
Before an attacker can attempt to break into a computer system several conditions must be met.  An
attacker must know a technique (e.g. exploit) that can be used to attempt the attack.  However, knowing
the exploit is not enough.  Before an exploit can be used its preconditions must be met.  These
preconditions include the set of vulnerabilities that the exploit relies on, sufficient user rights on the
target, sufficient user rights on the attacking host, and basic connectivity.  The result of a successful
exploit is not necessarily a compromised system; most exploits simply cause an increase in the
vulnerability of the network.  Results of a successful exploit could include discovering valuable
information about the network, elevating user rights, defeating filters, and adding trust relationships
among other possible effects.  Most successful attacks consist of a series of exploits that gradually
increase the vulnerability of the network until the prerequisites of the final exploit are met.

Network attackers normally start their work by searching for vulnerabilities on the hosts they can
communicate with on the target’s network.  When a vulnerability is discovered they use it to increase the
vulnerability level of the host.  Once a host is compromised to the point that the attacker has some remote
control of it, the host can then be used to launch attacks further into the network.  This will more than
likely include hosts that the attacker can not reach directly.

The attacker can use this new point of view to extend the number of hosts that can be searched for
vulnerabilities; perhaps discovering new hosts that can eventually be taken over.  This process can be
continued until the network is fully compromised, the attacker can no longer find additional
vulnerabilities to exploit or the attacker's goals are met.

4. Example Network
The purpose of this example is to provide a simple network structure to use for demonstrating the value of
this analysis technique. It is composed of a small organization’s network that includes a web server that
they use to provide information to their customers.  Due to budget constraints, public domain software is
used throughout the network to reduce costs.  The web server they have chosen to use is the widely used
Apache web server [Apache].  They have installed the web server using the copy that was included on an
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old RedHat Linux [RedHat] distribution.  Because they are a small company they only maintain one
network segment so the web server gets placed on the same segment as their file server. This network
structure is shown in figure 1.
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•  Hosts on the network including their vulnerabilities
•  Connectivity of the hosts
•  Current point of view of the attacker
•  Exploit techniques that can be used to change the state of the model
•  A list of security requirements the model should attempt to validate

Hosts represent potential targets for the attacker and have two major attributes, the attackers current
access level on the host and the hosts set of vulnerabilities.  A successful attack requires that
vulnerabilities exist in the network and that exploits for the vulnerabilities are known.  These
vulnerabilities are broadly defined.  In the model any fact about the host that could conceivably be
required as a prerequisite for an exploit is a vulnerability.   Taken from the example network, the web
server would be described to the model as follows.

Public Web Server
Vulnerabilities Current Access Level

Solaris version 2.5.1
Apache version 1.04
Telnetd
Ftpd

Count.cgi
Phf.cgi
No shadow file
Dtappgather

None

Table 2.  Sample Host
This list includes vulnerability information such as the version of the operating system and web server, as
well as the access level to the server that the attacker will begin with.

It is important that the model be able to model limited connectivity.  Any network that an attacker has
connectivity with will have some level of vulnerability.  Because of this, a key security technique is
network layer filtering.  It is important for the model to be able to represent the connectivity between
hosts that remains after all filters (firewalls) that exist between the hosts have been examined.  To allow a
simple example, the model represents connectivity between hosts as a matrix of boolean values.  In the
example network the router’s filtering rules are represented by the following table.

Attacker Border Router Public Web Server Private File Server

Attacker N/A Yes Yes No

Border Router Yes N/A Yes Yes

Public Web Server Yes Yes N/A Yes

Private File Server No Yes Yes N/A

Table 3.  Connectivity Matrix
Connectivity between different hosts will vary due to the different network filters.  If a hacker can gain
control of a host, the attacker may be able to launch attacks from the host.  It is important to model the
point of view of the attacker so that the set of hosts that are reachable by the attacker includes hosts
reachable by hosts under the attacker’s control.  The model maintains a level of access field on each host.
Any host that has a level of access higher than none may be used to launch some exploits.  When
determining which hosts the attacker can reach, the model checker looks for any hosts that are reachable
from the union of all hosts with an access level greater than none.

Before an attacker can attempt to break into a computer system the attacker must know an exploit that can
be used to attempt the attack.  However, knowing the exploit is not enough.  Before an exploit can be
used its preconditions must be met.  These preconditions include the set of vulnerabilities that the exploit
relies on, sufficient user rights on the target, sufficient user rights on the attacking host, and basic
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connectivity.  The model defines exploits by the set of vulnerabilities, source access level, target access
level, and connectivity they require, plus the results they have on the state of the model if they are
successful.  Exploits are used by the model to affect changes to the security of the hosts under analysis.
The quality and quantity of exploits encoded in the model have a direct relationship with the quality of the
analysis that can be performed with the model.  An example exploit included in the demonstration is the
PHF.cgi program.  This program shipped with several versions of the Apache web server and allowed a
remote attacker the ability to execute programs on the host.  Table 4 shows how the exploit was
represented in the model.

PHF Exploit
Prerequisites Source

Access Level
Target Access

Level
Results

(Apache versions up to 1.0.4 OR
 NCSA versions up to 1.5a) AND
phf program

ANY ANY Access level changed to httpd

Table 4. Sample Exploit

Security requirements are written as invariant statements in the model checker’s temporal logic formula
language. Each security requirement needs to be formulated as a temporal logic formula.  The full
expressivity of temporal logic is not normally used.  Most assertions take the form of events that should
never happen.  For example, a typical security requirement might be “An attacker can never access the
Private File Server”.  In SMV this would be formulated as AG (PrivateFileServer.Access = None).  If the
model checker can reach any state where an invariant statement is false then we know that it is possible
for an external attacker to violate one of our security requirements.

5.2 Execution of the Model
After the network has been described to the model checker and initialized, the model checker begins to
determine whether the security assertions made about the model are true.   The model checker starts by
determining the set of hosts the attacker has connectivity with and non-deterministically chooses one.
The model checker then tries to locate an exploit that can be used against the host.  All prerequisite
vulnerabilities for the exploit must exist on the target host.  In addition, the prerequisite access levels
(source and destination) must be met.  If successful, the results of the exploit are used to change the state
of the target by adding additional vulnerabilities and/or changing the attacker’s access level on the host.

If an exploit is successful it reduces the overall security of the network.  This is true because it may be
possible to run other exploits against the host if the additional vulnerabilities added match the prerequisite
vulnerabilities for another exploit.  The attacker may also be able to communicate with new hosts if the
attacker’s access level on the target host is increased (thereby allowing the attacker to use the target host
to launch attacks).

The model checker will continue to locate hosts to attack and will continue to search for valid exploits to
use until all possibilities have been explored or all of the security assertions have been proven false.  The
results are counter examples for each disproved assertion and a validation for any remaining assertions.

6. Mutating the Model
Mutation analysis was originally a code-based analysis technique for automating the development of test
cases [Offutt].  Recent applications of this technique have been used to design test cases from
specifications.  Here mutation analysis is applied to define test cases for network security.
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Mutation analysis works by defining mutation operators that are used to create many versions of the
original program (in this case model).  Mutation operators are defined so that when each is applied it
causes some small but significant change to the program.  As an example, one mutation operator for code-
level analysis changes a less-than comparison to a greater-than comparison.

An individual mutant operator is used to create each mutant version.  Each version represents a mutant of
the original program that has been intentionally flawed.  Test cases are created and run against the
mutants with the goal of causing the mutant version to fail. Test cases that cause a mutant to fail are said
to kill the mutant.  The ultimate goal is to design a test set that causes all generated mutant programs to
fail.  It is important to note that some mutants are impossible to kill.  This occurs when the mutant is
functionally equivalent to the original program.

6.1 Defining Mutation Operators
For network compromise to be possible, an exploit’s prerequisites need to be met.  This makes the exploit
prerequisites an excellent source for defining our mutant operators.  Potential operators include adding
vulnerabilities, increasing access levels, and adding connectivity.  Each of these changes would have the
effect of making the model less secure than the original.  There is no point in introducing mutations that
remove vulnerabilities, connectivity, or access level as this would have the effect of making the mutant
model more secure than the original model.

Each of these potential mutant operators represents a different real-world change that could occur to the
network.  However, not all changes that are possible in the model are likely in the network.  It is
important that we recognize what each mutant type represents in the actual network so that we can
intelligently filter out inappropriate mutants.

Add connectivity is the simplest of the mutant operators.  An add connectivity mutant demonstrates the
effect of a change to a firewall’s ruleset that allows more traffic past.  This type of configuration change is
common (though frequently unwise) on production networks.  By adding connectivity to the model, we
demonstrate what level of access could be gained by an attacker if the firewall configuration was
changed.  In the example network, there is only one restriction placed upon communication, the attacker
cannot talk directly with the private file server.  In this case, the add connectivity mutant would allow us
to see the ramifications of allowing the attacker direct access to the private file server.

Increase access level is more difficult.  Increase access level implies that an attacker is starting with more
access than a typical external attacker would have.  This could occur if the attacker was an insider or was
given information by an insider.  One problem in adding access to arbitrary hosts inside the network is the
problem of connectivity.  The attacker should only be able to use machines during an attack that can be
communicated with by the attacker.  Any host in the model that has an access level greater than none can
be used by the model in the attack.  Due to this, it is important that access levels on systems that the
attacker cannot gain access to not be modified.  As it is unclear at the beginning of the analysis which
systems the attacker will eventually be able to communicate with, it is difficult to decide in advance
which systems could be correctly mutated by increasing the attacker’s access level.  An alternative is to
introduce a vulnerability that would guarantee the attacker increased access should the attacker gain
connectivity to the host.  This is easily accomplished by defining a new super vulnerability with its
matching exploit.  With this change, the add vulnerability mutant is sufficient to model the increase
access mutant.  From the example network, an increase access level mutant would grant the attacker user
privileges on the web server, even though the attacker does not normally start with these privileges.  This
might be valuable if we assume that there is some method (yet unknown) that would allow the attacker to
gain this access. This is actually a reasonable assumption as new exploitation methods are discovered
daily.

The add vulnerability mutant models changes to the configuration of the target system.  These could
include adding software, changing permissions, modifying settings, etc.  There are many changes that are



likely to occur during the lifecycle of a system that would result in the addition of vulnerabilities.
However, out of the pool of all vulnerabilities, there are even more vulnerabilities that would not be either
likely or possible.  A good example would be trying to add Unix specific vulnerabilities to a Windows NT
system.  These invalid vulnerabilities must be eliminated before the analysis is conducted.

In the example network the analysis to weed out invalid add vulnerability mutants was conducted
manually.  To be able to automate the elimination of unreasonable vulnerabilities requires that more be
known about each vulnerability.  A structure is required that would allow vulnerabilities to be
categorized.  One possible structure is shown in figure 2.  In this structure, vulnerabilities are separated
into four categories, devices, operating systems, software, and basic vulnerabilities.  Vulnerabilities can
only be applied if their parent vulnerability already exists.  For each vulnerability (except devices), a
parent vulnerability would need to exist before the vulnerability could be applied.  For example, there is
an elevation of privilege exploit that relies on a faulty version of a program called dtappgather.  The
vulnerable version of dtappgather was shipped with several versions of the Solaris operating system.
Another way to say this is that the dtappgather vulnerability relies on the host running one of a set of
particular versions of Solaris.  So we model the dtappgather vulnerability as a software vulnerability that
relies on Solaris 2.5, Solaris 2.5.1, or Solaris 2.6.  If any host in the model is running any of these
operating systems, it would be reasonable to add the dtappgather vulnerability.
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instead address specifically what changes should be avoided in the future to prevent undermining the
network’s security.  This is the advantage of this mutation system.

By introducing a single vulnerability into the model and viewing any resulting counterexamples, the
system can identify the individual configuration changes that could lead to network compromise.  This
would lead to a list of configuration changes that could be phrased as “if we change this parameter, then
this security requirement will be invalidated”.  Extending beyond a single mutation per mutant gives us
the ability to look for combinations of configuration changes that would undermine the network.  For
example, if we allow two mutant operators per mutant model, we could create lists of security issues that
could be phrased as “if we change this parameter, and this parameter, then this security requirement will
be invalidated”.

This definition of network security mutation coverage is based upon the number of mutant operators that
can be applied together to produce a counterexample free analysis of the network.  If the coverage level is
set to one, then the network should be able to have any single configuration value changed without
undermining the security of the network.  If the level is two, then the network can survive two
configuration changes without fear of a compromise.  The higher the number, the more difficult it would
be for the network to be placed into an insecure state.

6.3 Running the Analysis
To perform the analysis, a network model is created that reflects the current configuration of the network.
Security requirements are then encoded into the model in the form of the invariant statements.  Next
mutants of the model are generated based upon the different mutant operators.  Depending upon the
coverage level, different numbers of mutant operators may be applied to produce a single mutant model.
If any mutants have been generated that are not relevant or reasonable in the context of our network, they
are removed in the next step.  Finally, the remaining mutant models are run through the model checker.  If
all mutants verify the security requirements (i.e. none produce counterexamples) the network meets the
current coverage level.  Otherwise, the network needs to be reconfigured to eliminate the source of the
vulnerabilities and the analysis must be run again.
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7. Results
A model of the example network was created and a level one analysis was conducted (only one mutation
allowed per mutant).  The result was a total of 30 different mutant models, one mutant created by an add
connectivity mutation, and 29 created by add vulnerability mutations.  Of these, 13 were judged to be
unreasonable and were removed.  This left 17 mutations that were analyzed by the model checker.  Six of
these models produced counter examples. By evaluating the first couple of steps in the counter examples
produced, it is possible for a security analyst to create recommended configuration changes.  These
counter examples with sample security recommendations are shown in table 5.

Number Mutant 1st Exploit Security Recommendation

1
Add Connectivity from
Attacker to
PrivateFileServer

Add BSD trust from
Attacker to
PrivateFileServer

Eliminate BSD daemons
on PrivateFileServer

2 Add PHF program to
PublicWebServer

Use PHF to gain user access
to PublicWebServer

Verify PHF not on
PublicWebServer

3 Password Hashes known on
PublicWebServer

Brute Force Passwords on
PublicWebServer

Use strong authentication on
PublicWebServer

4 Root password known on
PublicWebServer Telnet to PublicWebServer Use strong authentication on

PublicWebServer

5 BSD trust between Attacker
and PublicWebServer rlogin to PublicWebServer Eliminate BSD daemons on

PublicWebServer

6 User passwords known on
PublicWebServer Telnet to PublicWebServer Use strong authentication on

PublicWebServer

Table 5

8. Conclusions and Future Work
The significant contribution of this work is its ability to provide direct advice to assist security analyst to
create highly secure networks.  The results of this analysis point out the exact areas of the network that
need to have additional protection.  This automates the discovery of the factors that could lead to network
compromise.  In addition, the coverage criterion provides a unique and quantitative way to rate a
network’s security.

For this technique to be realized as a fully functioning tool several tasks need to be accomplished.  First,
the basic network modeling analysis this mutation technique relies upon needs to be fleshed out.  This
requires that the model be populated with an significant set of exploits, that a tool be created that scans for
the vulnerabilities these exploits require, and that the connectivity model is extended to provide a more
complete representation of TCP/IP functionality.  In addition, each vulnerability in the model needs to be
categorized, and the system features that the vulnerabilities relied upon needs to be recorded.  Finally, the
mutation engine needs to be automated so that it accepts as input the network model and the coverage
level and either produces a list of mutants that violate the model or verifies that the model meets the
coverage criterion.
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